
Plasma Meets Portability
A journey to performance portability and productivity in a Particle-in-Cell physics code

Joy Kitson, University of Delaware
Stephen Lien Harrell, Purdue University

Mentor: Dr. Robert Bird, CCS-7

Motivation
Exascale computing brings with it diverse machine architectures and
programming approaches which challenge application developers. Ap-
plications need to perform well on a wide range of architectures while
simultaneously minimizing development and maintenance overheads.
Current metrics of application efficiency focus on machine-specific per-
formance, rather than addressing performance, portability, and produc-
tivity (PPP). We create and apply a methodology for capturing the data
necessary to assess productivity and use an established method for
performance and portability.

Metric for Performance Portability
Performance portability (PP) can be defined as ”A measurement of an
application’s performance efficiency for a given problem that can be
executed correctly on all platforms in a given set.” [1]. One metric pro-
posed to quantify PP uses the harmonic mean, shown in Equation 1.

PP =


1∑

p ∈ H
1

e(a,p)

0
Equation 1: Performance Portability

On a given set of platforms, the
Performance Portability of an application is

the harmonic mean of the

performance efficiencies on each platform

or 0 if any platform is unsupported [1]

Path to Performance Portability and Productivity
In order to maximize PP each application must be optimized to run well
on each platform but be general enough to run on many platforms. A
way to implement this is to have a separate code path for each plat-
form. This method, however, increases maintenance overhead with
every platform added; it forces developers to fix every bug and im-
plement every feature separately for each platform. There are several
approaches that have been developed to reduce the number of code
paths, such as OpenMP, Kokkos, and RAJA.

Measure for Productivity

Figure 1: Logs are made during normal
work, then extracted in post-processing

We create a framework to mea-
sure the productivity of develop-
ment of an application. Data is
collected as part of a git workflow,
in which developers answer ques-
tions after each commit, directly

correlating data to a snapshot of the project state. The questions track
the amount of time spent on and the difficulty of specific types of tasks
and include a modified NASA Task Load Index (NASA-TLX) [2] to cap-
ture user perceptions of progress for the commit. The information is
combined to expose the relationships between components of a de-
veloper’s work and measure the overall productivity while improving an
application’s PP. All variables collected can be seen in Figure 5.

Case Study: VPIC

Figure 2: A VPIC rendering of volume, density and electron mix. [3]

VPIC is a particle-in-cell plasma physics model. The code tracks par-
ticles and electric and magnetic fields through a structured grid. VPIC
runs at large scales and on many CPU platforms, operating with up-
wards of 2 million MPI ranks and 7 trillion particles [4], as well as lever-
aging threads. VPIC currently lacks a method to offload work to most
accelerators. This is the first reported work towards porting VPIC to
graphics processing units (GPUs). As a case study, the performance
portability and the effort (Productivity) of porting VPIC into a PP frame-
work was measured. For the project Kokkos [5] was chosen as the
PP framework as it is the most mature with the features required. One
kernel in VPIC (advance b) was converted and analyzed in Table 1.

Original Kokkos

Platform
Performance Timing

(smaller is better)
Performance

Efficiency
Performance Timing

(smaller is better)
Performance

Efficiency

IBM Power 9
OpenMP 40 Threads

0.13s 62% 0.058s 74%

NVidia V100
CUDA

N/A 0% 0.044s 98%

Intel Skylake
OpenMP 44 threads

0.08s 100% 0.043s 100%

Performance Portability 0% 89%

Table 1: Performance Portability of the advance b Kernel in VPIC

As seen in Table 1, VPIC was originally portable on 2 of the 3 target
platforms. When evaluated on the original set of platforms using the
harmonic mean, the PP metric is 76%. When the Nvidia V100 platform
is introduced the PP of all three platforms goes to 0. It is shown above
that the Kokkos port on V100 is very close to the efficiency on Intel
Skylake. The performance efficiency of the IBM Power 9 is higher on
the Kokkos port than the original version. It is important to note that
the Kokkos implementation provides good application efficiency and it
accomplishes this with one code-path which may dramatically increase
productivity if the given PP framework supports new architectures in the
future.

Preliminary Productivity Results

Figure 3: Lines of Code Changed vs
Difficulty of Total Commit

Figure 4: Lines of Code Changed vs
Total Time Spent

The data used in Figures 3, 4, and 5 consists of 16 variables over 36
commits made by one author. In Figures 3, 4 each dot is representative
of a single commit.

Figure 5: This figure includes all productivity variables captured on each commit. The
coloring varies from dark blue (positively correlated) to white (randomly correlated) to
dark green (negatively correlated)

In Figures 3, 4, and 5 it is shown that we are able to capture and an-
alyze metrics and show correlation between some variables. In Figure
5 it is shown that Planning Time and Coding Time have a correlation
of 0.9. TLX-Effort, TLX-Frustration and TLX-Mental demand are also
highly correlated. This may indicate that some of these questions can
be removed without impact to the overall data which would decrease
the amount of time to complete the survey. In future work, the produc-
tivity measures that were created will be combined into a productivity
metric that could be predictive of effort needed for PP.

Acknowledgements
Support for this work was provided by U.S. Department of Energy at Los Alamos National Laboratory supported by Contract No. DE-AC52-
06NA25396. The Darwin cluster was used for this work. We would like to especially thank Dr. Hai Ah Nam, Dr. Bob Robey, and Dr. Kris Garrett for
their help and advice over the course of the summer. This publication has been assigned the LANL identifier LA-UR-18-25930.

References
S. J. Pennycook, J. Sewall, and V. Lee, “A metric for performance portability,” arXiv preprint arXiv:1611.07409, 2016.

S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load index): Results of empirical and theoretical research,” in Human Mental
Workload (P. A. Hancock and N. Meshkati, eds.), vol. 52 of Advances in Psychology, pp. 139 – 183, North-Holland, 1988.

A. Le, W. Daughton, O. Ohia, L.-J. Chen, Y.-H. Liu, S. Wang, W. D. Nystrom, and R. Bird, “Drift turbulence, particle transport, and anomalous
dissipation at the reconnecting magnetopause,” Physics of Plasmas, vol. 25, no. 6, p. 062103, 2018.

S. Byna, J. Chou, O. Rubel, Prabhat, H. Karimabadi, W. S. Daughter, V. Roytershteyn, E. W. Bethel, M. Howison, K. J. Hsu, K. W. Lin,
A. Shoshani, A. Uselton, and K. Wu, “Parallel i/o, analysis, and visualization of a trillion particle simulation,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2012 International Conference for, pp. 1–12, Nov 2012.

H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202–3216, 2014.


